Abstractive text summarization for Hungarian

نویسندگان

چکیده

In our research we have created a text summarization software tool for Hungarian using multilingual and BERT-based models. Two types of method exist: abstractive extractive. The is more similar to human generated summarization. Target summaries may include phrases that the original does not necessarily contain. This generates summarized by applying keywords were extracted from text. extractive summarizes most important or sentences built both models Hungarian. For models, used BERT model monolingual summarization, in addition also made experiments with ELECTRA We find outperformed all cases. Furthermore, small achieved higher results than some result because much fewer parameters trained on only 1 GPU within couple days. Another consideration are smaller which end users. To best knowledge first systems reported present paper such

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Generation for Abstractive Summarization

We have begun work on a framework for abstractive summarization and decided to focus on a module for text generation. For TAC 2010, we thus move away from sentence extraction. Each sentence in the summary we generate is based on a document sentence but it usually contains a smaller amount of information and uses fewer words. The system uses the output of a syntactic parser for a sentence and th...

متن کامل

Neural Abstractive Text Summarization

Abstractive text summarization is a complex task whose goal is to generate a concise version of a text without necessarily reusing the sentences from the original source, but still preserving the meaning and the key contents. We address this issue by modeling the problem as a sequence to sequence learning and exploiting Recurrent Neural Networks (RNNs). This work is a discussion about our ongoi...

متن کامل

Generative Adversarial Network for Abstractive Text Summarization

In this paper, we propose an adversarial process for abstractive text summarization, in which we simultaneously train a generative model G and a discriminative model D. In particular, we build the generator G as an agent of reinforcement learning, which takes the raw text as input and predicts the abstractive summarization. We also build a discriminator which attempts to distinguish the generat...

متن کامل

Framework for Abstractive Summarization using Text-to-Text Generation

We propose a new, ambitious framework for abstractive summarization, which aims at selecting the content of a summary not from sentences, but from an abstract representation of the source documents. This abstract representation relies on the concept of Information Items (INIT), which we define as the smallest element of coherent information in a text or a sentence. Our framework differs from pr...

متن کامل

Deep Recurrent Generative Decoder for Abstractive Text Summarization

We propose a new framework for abstractive text summarization based on a sequence-to-sequence oriented encoderdecoder model equipped with a deep recurrent generative decoder (DRGN). Latent structure information implied in the target summaries is learned based on a recurrent latent random model for improving the summarization quality. Neural variational inference is employed to address the intra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Az Eszterházy Károly Tanárképz? F?iskola tudományos közleményei

سال: 2021

ISSN: ['1216-6014', '1787-6117', '1787-5021', '1589-6498']

DOI: https://doi.org/10.33039/ami.2021.04.002